

1150 S. KING STREET, HONOLULU, HI 96814 LICENSE #: 92630

Sample Name: Premium CBD Dog Treats

Steep Hill ID: HI76766 Batch ID: 2593100

State ID:

Total

Edible Sample Type: Date Received: 11/11/2019 Date Reported: 11/13/2019 Pkg. Mass: 3.9 g # of Servings:

Customer: Himiko Organics LLC

4348 Waialae ave 924 Honolulu, HI 96816

OVERALL BATCH SUMMARY:

Residual Pesticides Microbial Impurities Mycotoxins Heavy Metals Moisture Residual Solvents Foreign Material

NT NT NT

N/A

Cannabinoid Results - Standard Potency

11/13/2019

Standard potency analysis utilizing Ultra High Performance Liquid Chromatography (UHPLC; HI-SOP-024)

Analyte	%	mg/g	mg/pkg	mg/serv	LOD mg/g	LOQ mg/g
CBD	0.048	0.48	1.90	1.90	0.0100	0.0105
CBDA	ND	ND	ND	ND	0.0100	0.0180
CBG	ND	ND	ND	ND	0.0100	0.0115
CBN	ND	ND	ND	ND	0.0100	0.0100
THC	ND	ND	ND	ND	0.0100	0.0100
THCA	ND	ND	ND	ND	0.0100	0.023

1.90

Total THC	Total CBD
Not Detected	0.048 %
Not Detected	0.48 mg/g
Not Detected	1.90 mg/pkg
Not Detected	1.90 mg/serv

Total THC = [THCA x 0.877] + [THC] Total CBD = $[CBDA \times 0.877] + [CBD]$

Cannabinoid Results - Extended Cannabinoids

1.90

0.048 0.48

Extended cannabinoid analysis utilizing Ultra High Performance Liquid Chromatography (UHPLC; HI-SOP-024)

NT

%	mg/g	mg/pkg	mg/serv	LOD mg/g	LOQ mg/g
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
NT	NT	NT	NT	NT	NT
	NT N	NT	NT N	NT NT NT NT NT NT	NT NT NT NT NT NT NT NT

LOD: Limit of Detection LOQ: Limit of Quantitation NT: Not Tested

ND: Not Detected

Nelson Lazaga, Ph.D Laboratory Director Date: 11/13/2019

The following results relate only to the samples tested and for the specific tests conducted. Steep Hill grants permission to reproduce this document in full only.

Page 1 of 3

CERTIFICATE OF ANALYSIS

Residual Pesticides Results

NT

Residual pesticide analysis utilizing Liquid Chromatography – Mass Spectrometry (LC-MSMS; HI-SOP-025) - Limit units: ug/g = ppm

Analyte	Pass/Fail	μg/g	Limit	LOD μg/g	LOQ μg/g	Analyte	Pass/Fail	μg/g	Limit	LOD µg/g	LOQ μg/g
Abamectin B1a		NT	NT	NT	NT	Hexythiazox		NT	NT	NT	NT
Acephate		NT	NT	NT	NT	Imazalil		NT	NT	NT	NT
Acequinocyl		NT	NT	NT	NT	Imidacloprid		NT	NT	NT	NT
Acetamiprid		NT	NT	NT	NT	Kresoxim-methyl		NT	NT	NT	NT
Aldicarb		NT	NT	NT	NT	Malathion		NT	NT	NT	NT
Azoxystrobin		NT	NT	NT	NT	Metalaxyl		NT	NT	NT	NT
Bifenazate		NT	NT	NT	NT	Methiocarb		NT	NT	NT	NT
Bifenthrin		NT	NT	NT	NT	Methomyl		NT	NT	NT	NT
Boscalid		NT	NT	NT	NT	Methyl Parathion		NT	NT	NT	NT
Carbaryl		NT	NT	NT	NT	MGK-264		NT	NT	NT	NT
Carbofuran		NT	NT	NT	NT	Myclobutanil		NT	NT	NT	NT
Chlorantraniliprole		NT	NT	NT	NT	Naled		NT	NT	NT	NT
Chlorfenapyr		NT	NT	NT	NT	Oxamyl		NT	NT	NT	NT
Chlorpyrifos		NT	NT	NT	NT	Paclobutrazol		NT	NT	NT	NT
Clofentezine		NT	NT	NT	NT	Permethrin		NT	NT	NT	NT
Cyfluthrin		NT	NT	NT	NT	Phosmet		NT	NT	NT	NT
Cypermethrin		NT	NT	NT	NT	Piperonyl Butoxide		NT	NT	NT	NT
Diazinon		NT	NT	NT	NT	Prallethrin		NT	NT	NT	NT
Dichlorvos		NT	NT	NT	NT	Propiconazole		NT	NT	NT	NT
Dimethoate		NT	NT	NT	NT	Propoxur		NT	NT	NT	NT
Ethoprophos		NT	NT	NT	NT	Pyrethrins		NT	NT	NT	NT
Etofenprox		NT	NT	NT	NT	Pyridaben		NT	NT	NT	NT
Etoxazole		NT	NT	NT	NT	Spinosad		NT	NT	NT	NT
Fenpyroximate		NT	NT	NT	NT	Spiromesifen		NT	NT	NT	NT
Fipronil		NT	NT	NT	NT	Spirotetramat		NT	NT	NT	NT
Flonicamid		NT	NT	NT	NT	Tebuconazole		NT	NT	NT	NT
Fludioxonil		NT	NT	NT	NT	Thiacloprid		NT	NT	NT	NT

Mycotoxin Results

Mycotoxin analysis utilizing Liquid Chromatography – Mass Spectrometry (LC-MS; HI-SOP-025) - Limit units: µg/kg = ppb

Analyte	Pass/Fail	μg/kg	Limit	LOD µg/kg	LOQ µg/kg
Aflatoxin B1		NT	NT	NT	NT
Aflatoxin B2		NT	NT	NT	NT
Aflatoxin G1		NT	NT	NT	NT
Aflatoxin G2		NT	NT	NT	NT
Ochratoxin A		NT	NT	NT	NT
Total Aflatoxins		NT	NT	NT	NT

Heavy Metals Results

Heavy metals analysis utilizing Atomic Absorption Spectroscopy (AAS; HI-SOP-015) - Limit units: μg/g = ppm

Analyte	Pass/Fail	μg/g	Limit	LOD µg/g	LOQ µg/g
Arsenic		NT	NT	NT	NT
Cadmium		NT	NT	NT	NT
Lead		NT	NT	NT	NT
Mercury		NT	NT	NT	NT

Residual Solvents Results

Residual solvents and processing chemicals analysis utilizing Headspace Gas Chromatography - Mass Spectrometry (HS-GC-MS; HI-SOP-010) - Limit units: ug/g = ppm

Analyte	Pass/Fail	μg/g	Limit	LOD μg/g	LOQ µg/g	Analyte	Pass/Fail	μg/g	Limit	LOD μg/g	LOQ µg/g
Acetone		NT	NT	NT	NT	Isobutane		NT	NT	NT	NT
Acetonitrile		NT	NT	NT	NT	Isopropanol		NT	NT	NT	NT
Benzene		NT	NT	NT	NT	Methanol		NT	NT	NT	NT
Butanes		NT	NT	NT	NT	n-Pentane		NT	NT	NT	NT
Chloroform		NT	NT	NT	NT	Tetrahydrofuran		NT	NT	NT	NT
Ethanol		NT	NT	NT	NT	Toluene		NT	NT	NT	NT
Heptanes		NT	NT	NT	NT	Total Xylenes		NT	NT	NT	NT
n-Hexane		NT	NT	NT	NT						

Nelson Lazaga, Ph.D Laboratory Director

The following results relate only to the samples tested and for the specific tests conducted. Steep Hill grants permission to reproduce this document in full only.

CERTIFICATE #: HI76766 REVISION #: HI76766.1

Page 2 of 3

1150 S. KING STREET, HONOLULU, HI 96814 LICENSE #: 92630 Accreditation # 92630

CERTIFICATE OF ANALYSIS

Terpenoid Results - Standard Terpenes NT

Standard terpene analysis utilizing Liquid Chromatography - Mass Spectrometry (LC-MS; HI-SOP-024)

Analyte	%	mg/g	LOD mg/g	LOQ mg/g
Caryophyllene Oxide	NT	NT	NT	NT
β-Caryophyllene	NT	NT	NT	NT
Citronellol	NT	NT	NT	NT
α-Humulene	NT	NT	NT	NT
Linalool	NT	NT	NT	NT
β-Myrcene	NT	NT	NT	NT
Total	NT	NT	NT	NT

Terpenoid Results - Extended Terpenes NT

Extended terpene analysis utilizing Gas Chromatography - Mass Spectrometry (GC-MS)

Analyte	%	mg/g	LOD mg/g	LOQ mg/g
α-Bisabolol	NT	NT	NT	NT
Camphene	NT	NT	NT	NT
3-Carene	NT	NT	NT	NT
Caryophyllene Oxide	NT	NT	NT	NT
β-Caryophyllene	NT	NT	NT	NT
Eucalyptol	NT	NT	NT	NT
Geraniol	NT	NT	NT	NT
Guaiol	NT	NT	NT	NT
Humulene	NT	NT	NT	NT
p-Isopropyltoluene	NT	NT	NT	NT
Isopulegol	NT	NT	NT	NT
Limonene	NT	NT	NT	NT
Linalool	NT	NT	NT	NT
β-Myrcene	NT	NT	NT	NT
Nerolidol	NT	NT	NT	NT
Ocimene	NT	NT	NT	NT
α-Pinene	NT	NT	NT	NT
β-Pinene	NT	NT	NT	NT
α-Terpinene	NT	NT	NT	NT
γ-Terpinene	NT	NT	NT	NT
Terpinolene	NT	NT	NT	NT
Total	NT	NT	NT	NT

		-
wicropiai	Impurities	Results

Microbiological screening utilizing PathogenDx and TEMPO (HI-SOP-008 + HI-SOP-007) - Limit units: CFU/q

Analyte	Pass/Fail	Result	Limit	LOQ
Aspergillus flavus		NT	NT	NT
Aspergillus fumigatus		NT	NT	NT
Aspergillus niger		NT	NT	NT
Salmonella		NT	NT	NT
Aerobic		NT	NT	NT
Coliform		NT	NT	NT
Enterobacteria		NT	NT	NT
General E. coli		NT	NT	NT
Yeast & Mold		NT	NT	NT

Moisture Results

NT

Moisture content analysis utilizing Moisture Balance (MB; HI-SOP-033) - Limit units: %

Analyte Pass/Fail % Limit

Foreign Material Results

NT

Foreign material analysis utilizing visual inspection with 10x magnification (HI-SOP-016)

Analyte Pass/Fail NT

> LOD: Limit of Detection LOQ: Limit of Quantitation

NT: Not Tested ND: Not Detected

CERTIFICATE #: HI76766

REVISION #: HI76766.1

Nelson Lazaga, Ph.D Laboratory Director Date: 11/13/2019

The following results relate only to the samples tested and for the specific tests conducted. Steep Hill grants permission to reproduce this document in full only.

© 2019 STEEP HILL, INC. ALL RIGHTS RESERVED

Page 3 of 3